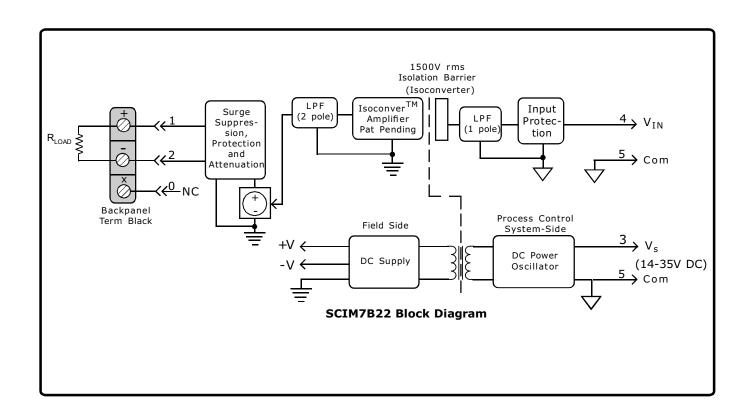


SCIM7B22

Isolated Bipolar Voltage Output Modules

Description


SCIM7B22 voltage output modules is a single channel analog output which if filtered, isolated, amplified, and converted to standard-level voltage output. A five pole filter is provided with signal filtering, this module accepts input signals in ± 100 range.

The input signal is chopped by a proprIetary converter circuit after initial filter stage,isolation is provided by transformer coupling which eliminates common mode spikes and surges. The signal is then reconstructed and filtered for process control system output.

These modules accepts a wide 14 - 35VDC power supply range (+24VDC nominal). The mechanical size ($2.13^{\prime\prime}x1.705^{\prime\prime}x0.605^{\prime\prime}$ max.) save space and are ideal for high channel density applications. They are designed for easy DIN Rail mounting using any of the "DIN"

Features

- *Accepts High Level Input to $\pm 10 \text{V}$
- •Standard High Level output to ±10V
- 1.5KV Isolation
- •Accuracy ±0.03% of span typical, ±0.1% max
- ANSI/IEEE C37.90.1 Transient Protection
- •120V rms Continuous Protected on Output
- *Input Protected to 120V rms
- Noise, 2mV Peak (5MHz), 1mV rms (100KHz)
- •CMRR, 100dB
- •80dB per Decade of Attenuation above 400Hz
- · Easy DIN Rail Mounting
- *CSA, FM, CE and ATEX Compliant

Specifications Typical at T_A =+25 $^{\rm O}$ C and +5V Power supply

Opcomoduono ijpiosi si	-A 20 0 and 01 1 01101 04pp	
Module	SCIM7B22	
Input Signal Range Bias Current Resistance Protection	$\pm 10\mathrm{V}$ $\pm 0.5\mathrm{nA}$ $2\mathrm{M}\Omega$ min $120\mathrm{V}$ ms (no damage)	
Output Signal Range(1) Effective available power(1) Resistance Protection Continuous Transient Voltage/Current Limit	$\begin{array}{c} \pm 10\text{V} \\ 20\text{m}\Omega \\ < 1\Omega \\ \\ 120\text{V rms} \\ \text{ANSI/IEEE C37.90.1} \\ \pm 12.5\text{V, } \pm 40\text{mA} \\ \end{array}$	
CMV (Input to Output) Continous Transient CMRR (50 or 60Hz)	1500V rms max ANSI/IEEE C37.90.1 100dB	
Accuracy ⁽²⁾ Nonlinearity ⁽³⁾	$\pm 0.03\%$ Span typical, $\pm 0.1\%$ Span max $\pm 0.01\%$ Span typical, $\pm 0.02\%$ Span max	
Stability (-40°C to +85°C) Gain Output Offset Noise Peak at 5MHz B/W RMS at 10Hz to 100KHz B/W Peak at 0.1Hz to 10Hz B/W	±35ppm/°C ±0.001% Span/°C 2mV 1mV 10mV RTI	
Frequency and Time Response		
Bandwidth, -3dB NMR (50/60Hz) Step Response, 90% span	400Hz 80dB/Decade above 400Hz 1ms	
Power supply voltage Power supply Current ⁽¹⁾ Power supply Sensitivity	19 to 29V DC 16 mA ±0.0001%/%V _S	
Mechanical Dimensions (H) (W) (D)	2.13"x1.705"x0.605"max (54.1 x 43.3 x 15.4mm) max	
Environmental Operating Temp.Range Storage Temp. Range Relative Humidity Emissions EN61000-6-4 Radiated, Conducted Immunity EN61000-6-2 RF ESD,EFT,Surge, Voltage Dips	-40°C to +85°C -40°C to +85°C 0 to 95% Noncondensing ISM, Group 1 Class A ISM, Group 1 Performance A ±0.5% Span Error Performance B	

- Note:

 (1). Output range and supply current specifications are based on minimum output load resistances.

 Minimum output load resistance is calculated by V_{out} ²/P_E where P_E is the output effective available power that guarantees output range, accuracy, and linearity specifications.

 (2). Accuracy includes the effects of repeatability, hysteresis, and linearity.

 (3). Non-linearity is calculated using the best-fit straight line method.

Ordering Information

Model	Input Range	Output Range
SCIM7B22	<u>+</u> 10V	<u>+</u> 10V